

IPv6 in Asia from Akamai Perspective

TWNOG 2018 21st Jun 2018

Name: Tonie Wong

Company: Akamai Technologies (Hong Kong)

Department: Network Partner Services APJ

Responsibilities: Service and Technical support for Akamai Network Partners (ISPs) in Asia Pacific region.

Akamai Intelligent Platform

The Akamai Intelligent Platform

The world's largest on-demand, distributed computing platform delivers all forms of web content and applications

The Akamai Intelligent Platform:

Servers Locations Networks Cities Countries	240,000+	3,900+	1,700+	1400+	~140
	Servers	Locations	Networks	Cities	Countries

Typical daily traffic:

- More than 10 trillion requests served
- Delivering over 40 Terabits/second
- Up to 15% of all daily web traffic

How CDNs Work

- When content is requested from CDNs, the user is directed to the optimal server to serve this user
- There's 2 common ways to do that:
- Anycast: the content is served from the location the request is received (easy to build, requires symmetric routing to work well)
- **DNS**: the CDN decides where to best serve the content from based on the resolver it receives the request from, and replies with the optimal server

How DNS based CDNs Work

- Users querying a DNS-based CDNs will be returned different A (and AAAA) records for the same hostname depending on the resolver the request comes from
- This is called "mapping"
- The better the mapping, the better the CDN service

How DNS based CDNs Work

- Example of Akamai mapping
 - Notice the different A/AAAA records for different locations:

[Taipei]% host <u>www.akamai.com</u>

- www.akamai.com CNAME e1699.dscx.akamaiedge.net.
- e1699.dscx.akamaiedge.net has address 104.115.234.97
- e1699.dscx.akamaiedge.net has IPv6 address 2600:1417:18:196::6a3
- e1699.dscx.akamaiedge.net has IPv6 address 2600:1417:18:18e::6a3

[Tokyo]% host <u>www.akamai.com</u>

- www.akamai.com CNAME e1699.dscx.akamaiedge.net.
- e1699.dscx.akamaiedge.net has address 23.37.145.245
- e1699.dscx.akamaiedge.net has IPv6 address 2600:140b:4:18e::6a3
- e1699.dscx.akamaiedge.net has IPv6 address 2600:140b:4:199::6a3

- 1) end-user requests www.example.com from ISP NS
- 2) ISP NS recursively (multiple iterations) looks up www.example.com being referred to authoritative Akamai NS (by CNAME)
- 3) ISP NS asks authoritative Akamai NS
- 4) Akamai NS looks up IP of requestor (ISP NS) and replies with IP of optimal cluster to serve content (local cluster in that ISP)
- 5) ISP NS replies to end-user who
- 6) requests content from local Cluster

IPv6 More address spaces only!?

Everyone knows - IPv4 exhaustion

On 15 April 2011, the APNIC pool reached the last /8 of available IPv4 addresses, triggering the Final /8 policy.

APNIC IPv4 address pool

Performance Impact to CDNSP

- Limit IP address --> Limit content slots for a CDN node.
 - Less choice of optimal nodes to be chosen.
 - Suboptimal mapping occurs
 - → Overall performance reduced

Fixed price: \$4,864 Avg. Cost Per Unit: \$19.00 Closes in 3d 14h

AUCTION	AUCTION
/19 Block Registered in ARIN	/22 Block Registered in AR
Current bid: \$147,456	Current bid: \$17,408
Avg. Cost Per Unit: \$18.00	Avg. Cost Per Unit: \$17.00
Bids: 0	Bids: 0
Closes in 3d 15h	Closes in 12h 2m

/21 Block Registered in ARIN Current bid: \$33,792 Avg. Cost Per Unit: \$16.50 Bids: 1 Closes in 12h 2m

Akamai

Block Size*	/24	/23	/22	/21	/20	/19	/18	/17	/16
Price/IP (USD)	\$24.00	\$21.00	\$18.00	\$16.00	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00

Pic Source: IPv4auction.com

https://ipv4auction.com

Table Source: IPv4 Market Group

https://ipv4marketgroup.com/broker-services/buy/

© 2017 AKAMAI | FASTER FORWARD™

Network Complexity

- Network Address Translation (NAT)
 - Slow down the depletion of IPv4 and provide low-level of security

Who is actually attacking our service?

- Difficult to identify attackers behind CGNAT
- induce performance bottleneck and additional cost
- is not a necessary component
- Induce extra complexity

Address space management

Akamai statistics on IPv6 growth

Global IPv6 Traffic by month

--- Average IPv6 Pct --- Max IPv6 Pct

©2017 AKAMAI | FASTER FORWARD[™]

Top – 10 Countries

1. India (55.6%)

25.3%

22.5%

19.2%

8.8%

18.0%

9.0%

1.3%

1.4%

8.8%

1.2%

- 2. Belgium (46.5%)
- 3. USA (45.9%)
- 4. Greece (35.4%)
- 5. Germany (35%)
- 6. Malaysia(28.7%
- 7. Japan (27.8%)
- 8. Brazil (26.9%)
- 9. Finland (26.0%)
- 10. Switzerland (25.8%)

IPv6 Adoption status in Global

©2017 AKAMAI | FASTER FORWARDTM

IPv6 Adoption status in Network

©2017 AKAMAI | FASTER FORWARD

3 Scandinavia

Countries with < 3% IPv6 adoption

- Russia
- China
- Hong Kong
- Italy
- Spain
- Indonesia
- Turkey
- <mark>South Korea</mark>

How about Taiwan?

Date	21-Jun-17	20-Dec-17	3-Apr-18	2-May-18	16-May-18	23-May-18	30-May-18	6-Jun-18
IPv6%	0.50%	0.90%	3.20%	8.30%	12%	12.20%	12.30%	12.90%

©2017 AKAMAI | FASTER FORWARDTM

How about Taiwan?

IPv6 traffic percentage of Akamai Dual-stacked hostname delivered to Taiwan ISPs

網絡供應商	IPv6 百分比
中華電信 (Mobile)	50.04%
教育網	25.56%
中華電信 (HiNet)	12.50%
台灣固網	0%
台灣大哥大	0%
遠傳 (Mobile)	0%
遠傳 (SeedNet)	0%
亞太電信	0%
台灣之星	0%
中嘉禾網	0%

Eastern Asia Summary

Akamai status of IPv6

- Almost all products support IPv6 for end-users to Akamai
 - New configurations default to dual-stack for most products
 - Some experiments have shown IPv6 performs better than IPv4
- Most Akamai DNS zones have AAAA authorities
- IPv6 support from Akamai to origin fetching
- IPv6 live on Akamai servers around the world in:
 - 112 countries, 680+ cities, 2200+ locations, 800+ networks

How Akamai enable IPv6 (Dual-stack ready by default)

Dual-stacking edge servers

More info:

Akamai Customer properties can be dual-stacked

- Terminate IPv4 and IPv6 connections in server software
- Can go forward to our customer origin via IPv4 (or IPv6)

©2017 AKAMAI | FASTER FORWARD

Growth on Dual-stacked content available in Akamai customers (2016 vs 2018)

©2017 AKAMAI | FASTER FORWARDTM

Summary and Suggestion

Content owner

- Enable IPv6 caching function / with your CDN provider
- It is easy for customer to adopt IPv6 in Akamai
- ISPs
 - Extend IPv6 connectivity to subscriber
 - Deploy v6 DNS facilities for AAAA Record for end users

- Tonie Wong : shwong@akamai.com
- More information:
- Peering: <u>http://as20940.peeringdb.com</u> <u>http://as32787.peeringdb.com</u>
- SOTI Quarterly Report
- https://www.stateoftheinternet.com
- IPv6 Adoption Visualization: <u>www.stateofinternet.com/ipv6</u>

End